Solutions for transients in arbitrarily branching cables: III. Voltage clamp problems

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solutions for transients in arbitrarily branching cables: II. Voltage clamp theory.

Analytical solutions are derived for arbitrarily branching passive neurone models with a soma and somatic shunt, for synaptic inputs and somatic voltage commands, for both perfect and imperfect somatic voltage clamp. The solutions are infinite exponential series. Perfect clamp decouples different dendritic trees at the soma: each exponential component exists only in one tree; its time constant ...

متن کامل

Voltage and current clamp transients with membrane dielectric loss.

Transient responses of a space-clamped squid axon membrane to step changes of voltage or current are often approximated by exponential functions of time, corresponding to a series resistance and a membrane capacity of 1.0 muF/cm(2). Curtis and Cole (1938, J. Gen. Physiol.21:757) found, however, that the membrane had a constant phase angle impedance z = z(1)(jomegatau)(-alpha), with a mean alpha...

متن کامل

Low frequency voltage clamp: recording of voltage transients at constant average command voltage.

We implemented a simple feedback system that modifies the conventional current clamp mode of a patch clamp amplifier so that transient potentials, such as action potentials and synaptic potentials, can be measured as in the usual current clamp, while the average membrane potential is kept constant at a value chosen by the user. The circuit thus works like the current clamp for high frequency si...

متن کامل

Solutions to Review Problems for Midterm III

6 = 2(cos( (π+2kπ) 6 ) + i sin( (π+2kπ) 6 )) where k = 0, 1, 2, · · · , 5. Let rk = 2(cos( (π+2kπ) 6 ) + i sin( (π+2kπ) 6 )) where k = 0, 1, 2, · · · , 5. Therefore r0 = 2(cos( π 6 )+i sin( 6 )) = √ 3+i, r1 = 2(cos( π 2 )+i sin( 2 )) = 2i, r2 = 2(cos( 5π 6 )+ i sin( 6 )) = − √ 3 + i, r3 = 2(cos( 7π 6 ) + i sin( 6 )) = − √ 3 − i, r4 = 2(cos( 2 ) + i sin( 2 )) = −2i and r5 = 2(cos( 6 ) + i sin( 1...

متن کامل

Solutions to Review Problems for Midterm III

6 = 2(cos( (π+2kπ) 6 ) + i sin( (π+2kπ) 6 )) where k = 0, 1, 2, · · · , 5. Let rk = 2(cos( (π+2kπ) 6 ) + i sin( (π+2kπ) 6 )) where k = 0, 1, 2, · · · , 5. Therefore r0 = 2(cos( π 6 )+i sin( 6 )) = √ 3+i, r1 = 2(cos( π 2 )+i sin( 2 )) = 2i, r2 = 2(cos( 5π 6 )+ i sin( 6 )) = − √ 3 + i, r3 = 2(cos( 7π 6 ) + i sin( 6 )) = − √ 3 − i, r4 = 2(cos( 2 ) + i sin( 2 )) = −2i and r5 = 2(cos( 6 ) + i sin( 1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Biophysical Journal

سال: 1993

ISSN: 0006-3495

DOI: 10.1016/s0006-3495(93)81039-7